Results for 'Brazilian Conference on Mathematical Logic'

942 found
Order:
  1. 19th Brazilian Logic Conference: Book of Abstracts.Cezar A. Mortari & Ricardo Silvestre (eds.) - 2019 - João Pessoa, PB, Brasil: EDUFCG.
    This is the book of abstracts of the 19th Brazilian Logic Conferences. The Brazilian Logic Conferences (EBL) is one of the most traditional logic conferences in South America. Organized by the Brazilian Logic Society (SBL), its main goal is to promote the dissemination of research in logic in a broad sense. It has been occurring since 1979, congregating logicians of different fields — mostly philosophy, mathematics and computer science — and with different (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. XVI Brazilian Logic Conference (EBL 2011).Walter Carnielli, Renata de Freitas & Petrucio Viana - 2012 - Bulletin of Symbolic Logic 18 (1):150-151.
    This is the report on the XVI BRAZILIAN LOGIC CONFERENCE (EBL 2011) held in Petrópolis, Rio de Janeiro, Brazil between May 9–13, 2011 published in The Bulletin of Symbolic Logic Volume 18, Number 1, March 2012. -/- The 16th Brazilian Logic Conference (EBL 2011) was held in Petro ́polis, from May 9th to 13th, 2011, at the Laboratório Nacional de Computação o Científica (LNCC). It was the sixteenth in a series of conferences that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. On the Logics with Propositional Quantifiers Extending S5Π.Yifeng Ding - 2018 - In Guram Bezhanishvili, Giovanna D'Agostino, George Metcalfe & Thomas Studer (eds.), Advances in Modal Logic 12, proceedings of the 12th conference on "Advances in Modal Logic," held in Bern, Switzerland, August 27-31, 2018. pp. 219-235.
    Scroggs's theorem on the extensions of S5 is an early landmark in the modern mathematical studies of modal logics. From it, we know that the lattice of normal extensions of S5 is isomorphic to the inverse order of the natural numbers with infinity and that all extensions of S5 are in fact normal. In this paper, we consider extending Scroggs's theorem to modal logics with propositional quantifiers governed by the axioms and rules analogous to the usual ones for ordinary (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Ancient logic and its modern interpretations.John Corcoran (ed.) - 1974 - Boston,: Reidel.
    This book treats ancient logic: the logic that originated in Greece by Aristotle and the Stoics, mainly in the hundred year period beginning about 350 BCE. Ancient logic was never completely ignored by modern logic from its Boolean origin in the middle 1800s: it was prominent in Boole’s writings and it was mentioned by Frege and by Hilbert. Nevertheless, the first century of mathematical logic did not take it seriously enough to study the ancient (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  5. On the theory of labels-tokens.Urszula Wybraniec-Skardowska - 1981 - Bulletin of the Section of Logic 10 (1):30-33.
    This note is based on a lecture delivered at the Conference on the Scien- tic Research of the Mathematical Center of Opole, Turawa, May 10-11th, 1980. A somewhat extended version will be published in the Proceedings of the Conference. At the same time it is an abstract of a part of a planned larger paper, which will involve the theory of label-tokens. The theory is included into the author's monograph in Polish "Teorie Językow Syntaktycznie Kategorialnych", PWN, Warszawa-Wrocław (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6. Book of Abstracts: Trends in Logic XVI: Consistency, Contradiction, Paraconsistency and Reasoning.Walter A. Carnielli, Rafael Testa & Juliana Bueno-Soler - 2016 - Campinas, SP, Brasil: CLE-Unicamp.
    “Trends in Logic XVI: Consistency, Contradiction, Paraconsistency, and Reasoning - 40 years of CLE” is being organized by the Centre for Logic, Epistemology and the History of Science at the State University of Campinas (CLEUnicamp) from September 12th to 15th, 2016, with the auspices of the Brazilian Logic Society, Studia Logica and the Polish Academy of Sciences. The conference is intended to celebrate the 40th anniversary of CLE, and is centered around the areas of (...), epistemology, philosophy and history of science, while bringing together scholars in the fields of philosophy, logic, mathematics, computer science and other disciplines who have contributed significantly to what Studia Logica is today and to what CLE has achieved in its four decades of existence. It intends to celebrate CLE’s strong influence in Brazil and Latin America and the tradition of investigating formal methods inspired by, and devoted to, philosophical views, as well as philosophical problems approached by means of formal methods. The title of the event commemorates one of the three main areas of CLE, what has been called the “Brazilian school of paraconsistency”, combining such a pluralist view about logic and reasoning. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Quantile regression model on how logical and rewarding is learning mathematics in the new normal.Leomarich Casinillo - 2024 - Palawan Scientist 16 (1):48-57.
    Learning mathematics through distance education can be challenging, with the “logical” and “rewarding” nature proving difficult to measure. This article aimed to articulate an argument explaining the “logical” and “rewarding” nature of online mathematics learning, elucidating their causal factors. Existing data from the literature that involving students at Visayas State University, Philippines, were utilized in this study. The study used statistical measures to capture descriptions from the data, and quantile regression analysis was employed to forecast the predictors of the logicality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Debunking Arguments: Mathematics, Logic, and Modal Security.Justin Clarke-Doane - 2017 - In Michael Ruse & Robert J. Richards (eds.), The Cambridge Handbook of Evolutionary Ethics. New York: Cambridge University Press.
    I discuss the structure of genealogical debunking arguments. I argue that they undermine our mathematical beliefs if they undermine our moral beliefs. The contrary appearance stems from a confusion of arithmetic truths with (first-order) logical truths, or from a confusion of reliability with justification. I conclude with a discussion of the cogency of debunking arguments, in light of the above. Their cogency depends on whether information can undermine all of our beliefs of a kind, F, without giving us direct (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  9. Formal and Transcendental Logic- Husserl's most mature reflection on mathematics and logic.Mirja Helena Hartimo - 2021 - In Hanne Jacobs (ed.), The Husserlian Mind. New Yor, NY: Routledge. pp. 50-59.
    This essay presents Husserl’s Formal and Transcendental Logic (1929) in three main sections following the layout of the work itself. The first section focuses on Husserl’s introduction where he explains the method and the aim of the essay. The method used in FTL is radical Besinnung and with it an intentional explication of proper sense of formal logic is sought for. The second section is on formal logic. The third section focuses on Husserl’s “transcendental logic,” which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  11. Sofia A. Yanovskaya: The Marxist Pioneer of Mathematical Logic in the Soviet Union.Dimitris Kilakos - 2019 - Transversal: International Journal for the Historiography of Science 6:49-64.
    K. Marx’s 200th jubilee coincides with the celebration of the 85 years from the first publication of his “Mathematical Manuscripts” in 1933. Its editor, Sofia Alexandrovna Yanovskaya (1896–1966), was a renowned Soviet mathematician, whose significant studies on the foundations of mathematics and mathematical logic, as well as on the history and philosophy of mathematics are unduly neglected nowadays. Yanovskaya, as a militant Marxist, was actively engaged in the ideological confrontation with idealism and its influence on modern mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Bayesian Perspectives on Mathematical Practice.James Franklin - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2711-2726.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. On the Logical Form of Educational Philosophy and Theory: Herbart, Mill, Frankena, and Beyond.Berislav Žarnić - 2016 - Encyclopedia of Educational Philosophy and Theory: Living Reference Work.
    The investigation into logical form and structure of natural sciences and mathematics covers a significant part of contemporary philosophy. In contrast to this, the metatheory of normative theories is a slowly developing research area in spite of its great predecessors, such as Aristotle, who discovered the sui generis character of practical logic, or Hume, who posed the “is-ought” problem. The intrinsic reason for this situation lies in the complex nature of practical logic. The metatheory of normative educational philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Artifice and the natural world: Mathematics, logic, technology.James Franklin - 2006 - In Knud Haakonssen (ed.), The Cambridge history of eighteenth-century philosophy. Cambridge ; New York: Cambridge University Press.
    If Tahiti suggested to theorists comfortably at home in Europe thoughts of noble savages without clothes, those who paid for and went on voyages there were in pursuit of a quite opposite human ideal. Cook's voyage to observe the transit of Venus in 1769 symbolises the eighteenth century's commitment to numbers and accuracy, and its willingness to spend a lot of public money on acquiring them. The state supported the organisation of quantitative researches, employing surveyors and collecting statistics to..
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. (1 other version)Mathematical Modality: An Investigation in Higher-order Logic.Andrew Bacon - forthcoming - Journal of Philosophical Logic.
    An increasing amount of contemporary philosophy of mathematics posits, and theorizes in terms of special kinds of mathematical modality. The goal of this paper is to bring recent work on higher-order metaphysics to bear on the investigation of these modalities. The main focus of the paper will be views that posit mathematical contingency or indeterminacy about statements that concern the `width' of the set theoretic universe, such as Cantor's continuum hypothesis. Within a higher-order framework I show that contingency (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Analogies, Moral Intuitions, and the Expertise Defence.Regina A. Rini - 2014 - Review of Philosophy and Psychology 5 (2):169-181.
    The evidential value of moral intuitions has been challenged by psychological work showing that the intuitions of ordinary people are affected by distorting factors. One reply to this challenge, the expertise defence, claims that training in philosophical thinking confers enhanced reliability on the intuitions of professional philosophers. This defence is often expressed through analogy: since we do not allow doubts about folk judgments in domains like mathematics or physics to undermine the plausibility of judgments by experts in these domains, we (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  17. Review of: Hilary Putnam on Logic and Mathematics, by Geoffrey Hellman and Roy T. Cook (eds.). [REVIEW]Tim Button - 2019 - Mind 129 (516):1327-1337.
    Putnam’s most famous contribution to mathematical logic was his role in investigating Hilbert’s Tenth Problem; Putnam is the ‘P’ in the MRDP Theorem. This volume, though, focusses mostly on Putnam’s work on the philosophy of logic and mathematics. It is a somewhat bumpy ride. Of the twelve papers, two scarcely mention Putnam. Three others focus primarily on Putnam’s ‘Mathematics without foundations’ (1967), but with no interplay between them. The remaining seven papers apparently tackle unrelated themes. Some of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Heidegger, Gendlin and Deleuze on the Logic of Quantitative Repetition.Joshua Soffer - manuscript
    Philosophers such as Nietzsche, Heidegger, Derrida, Deleuze and Gendlin pronounce that difference must be understood as ontologically prior to identity. They teach that identity is a surface effect of difference, that to understand the basis of logico-mathematical idealities we must uncover their genesis in the fecundity of differentiation. In this paper, I contrast Heidegger’s analyses of the present to hand logico-mathematical object, which he discuses over the course of his career in terms of the ‘as’ structure, temporalization and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Intuition and ecthesis: the exegesis of Jaakko Hintikka on mathematical knowledge in kant's doctrine.María Carolina Álvarez Puerta - 2017 - Apuntes Filosóficos 26 (50):32-55.
    Hintikka considers that the “Transcendental Deduction” includes finding the role that concepts in the effort is meant by human activities of acquiring knowledge; and it affirms that the principles governing human activities of knowledge can be objective rules that can become transcendental conditions of experience and no conditions contingent product of nature of human agents involved in the know. In his opinion, intuition as it is used by Kant not be understood in the traditional way, ie as producer of mental (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Acts of Time: Cohen and Benjamin on Mathematics and History.Julia Ng - 2017 - Paradigmi. Rivista di Critica Filosofica 2017 (1):41-60.
    This paper argues that the principle of continuity that underlies Benjamin’s understanding of what makes the reality of a thing thinkable, which in the Kantian context implies a process of “filling time” with an anticipatory structure oriented to the subject, is of a different order than that of infinitesimal calculus—and that a “discontinuity” constitutive of the continuity of experience and (merely) counterposed to the image of actuality as an infinite gradation of ultimately thetic acts cannot be the principle on which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115.John Corcoran - 1983 - MATHEMATICAL REVIEWS 83:03005.
    CORCORAN RECOMMENDS COCCHIARELLA ON TYPE THEORY. The 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115 .
    Download  
     
    Export citation  
     
    Bookmark  
  24. On Woodruff’s Constructive Nonsense Logic.Jonas R. B. Arenhart & Hitoshi Omori - forthcoming - Studia Logica:1-20.
    Sören Halldén’s logic of nonsense is one of the most well-known many-valued logics available in the literature. In this paper, we discuss Peter Woodruff’s as yet rather unexplored attempt to advance a version of such a logic built on the top of a constructive logical basis. We start by recalling the basics of Woodruff’s system and by bringing to light some of its notable features. We then go on to elaborate on some of the difficulties attached to it; (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Logic. of Descriptions. A New Approach to the Foundations of Mathematics and Science.Joanna Golińska-Pilarek & Taneli Huuskonen - 2012 - Studies in Logic, Grammar and Rhetoric 27 (40):63-94.
    We study a new formal logic LD introduced by Prof. Grzegorczyk. The logic is based on so-called descriptive equivalence, corresponding to the idea of shared meaning rather than shared truth value. We construct a semantics for LD based on a new type of algebras and prove its soundness and completeness. We further show several examples of classical laws that hold for LD as well as laws that fail. Finally, we list a number of open problems. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  26. Set Theory INC# Based on Intuitionistic Logic with Restricted Modus Ponens Rule (Part. I).Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (2):73-88.
    In this article Russell’s paradox and Cantor’s paradox resolved successfully using intuitionistic logic with restricted modus ponens rule.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Logic, Philosophy and Physics: A Critical Commentary on the Dilemma of Categories.Abhishek Majhi - 2022 - Axiomathes 32 (6):1415-1431.
    I provide a critical commentary regarding the attitude of the logician and the philosopher towards the physicist and physics. The commentary is intended to showcase how a general change in attitude towards making scientific inquiries can be beneficial for science as a whole. However, such a change can come at the cost of looking beyond the categories of the disciplines of logic, philosophy and physics. It is through self-inquiry that such a change is possible, along with the realization of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  28. Wittgenstein on Gödelian 'Incompleteness', Proofs and Mathematical Practice: Reading Remarks on the Foundations of Mathematics, Part I, Appendix III, Carefully.Wolfgang Kienzler & Sebastian Sunday Grève - 2016 - In Sebastian Sunday Grève & Jakub Mácha (eds.), Wittgenstein and the Creativity of Language. Palgrave Macmillan. pp. 76-116.
    We argue that Wittgenstein’s philosophical perspective on Gödel’s most famous theorem is even more radical than has commonly been assumed. Wittgenstein shows in detail that there is no way that the Gödelian construct of a string of signs could be assigned a useful function within (ordinary) mathematics. — The focus is on Appendix III to Part I of Remarks on the Foundations of Mathematics. The present reading highlights the exceptional importance of this particular set of remarks and, more specifically, emphasises (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  29. Parfit on Moral Disagreement and The Analogy Between Morality and Mathematics.Adam Greif - 2021 - Filozofia 9 (76):688 - 703.
    In his book On What Matters, Derek Parfit defends a version of moral non-naturalism, a view according to which there are objective normative truths, some of which are moral truths, and we have a reliable way of discovering them. These moral truths do not exist, however, as parts of the natural universe nor in Plato’s heaven. While explaining in what way these truths exist and how we discover them, Parfit makes analogies between morality on the one hand, and mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Symmetry and Reformulation: On Intellectual Progress in Science and Mathematics.Josh Hunt - 2022 - Dissertation, University of Michigan
    Science and mathematics continually change in their tools, methods, and concepts. Many of these changes are not just modifications but progress---steps to be admired. But what constitutes progress? This dissertation addresses one central source of intellectual advancement in both disciplines: reformulating a problem-solving plan into a new, logically compatible one. For short, I call these cases of compatible problem-solving plans "reformulations." Two aspects of reformulations are puzzling. First, reformulating is often unnecessary. Given that we could already solve a problem using (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Cognitive Skills Achievement in Mathematics of the Elementary Pre-Service Teachers Using Piaget’s Seven Logical Operations.Jaynelle G. Domingo, Edwin D. Ibañez, Gener Subia, Jupeth Pentang, Lorinda E. Pascual, Jennilyn C. Mina, Arlene V. Tomas & Minnie M. Liangco - 2021 - Turkish Journal of Computer and Mathematics Education 12 (4):435-440.
    This study determined the cognitive skills achievement in mathematics of elementary pre-service teachers as a basis for improving problem-solving and critical thinking which was analyzed using Piaget's seven logical operations namely: classification, seriation, logical multiplication, compensation, ratio and proportional thinking, probability thinking, and correlational thinking. This study utilized an adopted Test on Logical Operations (TLO) and descriptive research design to describe the cognitive skills achievement and to determine the affecting factors. Overall, elementary pre-service teachers performed with sufficient understanding in dealing (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  32. Unpacking the logic of mathematical statements.Annie Selden - 1995 - Educational Studies in Mathematics 29:123-151.
    This study focuses on undergraduate students' ability to unpack informally written mathematical statements into the language of predicate calculus. Data were collected between 1989 and 1993 from 61students in six small sections of a “bridge" course designed to introduce proofs and mathematical reasoning. We discuss this data from a perspective that extends the notion of concept image to that of statement image and introduces the notion of proof framework to indicate the top-level logical structure of a proof. For (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  33. Managing Informal Mathematical Knowledge: Techniques from Informal Logic.Andrew Aberdein - 2006 - Lecture Notes in Artificial Intelligence 4108:208--221.
    Much work in MKM depends on the application of formal logic to mathematics. However, much mathematical knowledge is informal. Luckily, formal logic only represents one tradition in logic, specifically the modeling of inference in terms of logical form. Many inferences cannot be captured in this manner. The study of such inferences is still within the domain of logic, and is sometimes called informal logic. This paper explores some of the benefits informal logic may (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  34. On Logical and Scientific Strength.Luca Incurvati & Carlo Nicolai - forthcoming - Erkenntnis:1-23.
    The notion of strength has featured prominently in recent debates about abductivism in the epistemology of logic. Following Williamson and Russell, we distinguish between logical and scientific strength and discuss the limits of the characterizations they employ. We then suggest understanding logical strength in terms of interpretability strength and scientific strength as a special case of logical strength. We present applications of the resulting notions to comparisons between logics in the traditional sense and mathematical theories.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  35. What is Mathematics: Gödel's Theorem and Around (Edition 2015).Karlis Podnieks - manuscript
    Introduction to mathematical logic. Part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. (1 other version)Mill on logic.David Godden - 2016 - In Christopher Macleod & Dale E. Miller (eds.), A Companion to Mill. Hoboken: John Wiley & Sons, Inc.. pp. 175-191.
    Working within the broad lines of general consensus that mark out the core features of John Stuart Mill’s (1806–1873) logic, as set forth in his A System of Logic (1843–1872), this chapter provides an introduction to Mill’s logical theory by reviewing his position on the relationship between induction and deduction, and the role of general premises and principles in reasoning. Locating induction, understood as a kind of analogical reasoning from particulars to particulars, as the basic form of inference (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  37. On the explanatory power of truth in logic.Gila Sher - 2018 - Philosophical Issues 28 (1):348-373.
    Philosophers are divided on whether the proof- or truth-theoretic approach to logic is more fruitful. The paper demonstrates the considerable explanatory power of a truth-based approach to logic by showing that and how it can provide (i) an explanatory characterization —both semantic and proof-theoretical—of logical inference, (ii) an explanatory criterion for logical constants and operators, (iii) an explanatory account of logic’s role (function) in knowledge, as well as explanations of (iv) the characteristic features of logic —formality, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Hobbes on the Order of Sciences: A Partial Defense of the Mathematization Thesis.Zvi Biener - 2016 - Southern Journal of Philosophy 54 (3):312-332.
    Accounts of Hobbes’s ‘system’ of sciences oscillate between two extremes. On one extreme, the system is portrayed as wholly axiomtic-deductive, with statecraft being deduced in an unbroken chain from the principles of logic and first philosophy. On the other, it is portrayed as rife with conceptual cracks and fissures, with Hobbes’s statements about its deductive structure amounting to mere window-dressing. This paper argues that a middle way is found by conceiving of Hobbes’s _Elements of Philosophy_ on the model of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Mathematics, Morality, and Self‐Effacement.Jack Woods - 2016 - Noûs 52 (1):47-68.
    I argue that certain species of belief, such as mathematical, logical, and normative beliefs, are insulated from a form of Harman-style debunking argument whereas moral beliefs, the primary target of such arguments, are not. Harman-style arguments have been misunderstood as attempts to directly undermine our moral beliefs. They are rather best given as burden-shifting arguments, concluding that we need additional reasons to maintain our moral beliefs. If we understand them this way, then we can see why moral beliefs are (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  40. On Classical and Quantum Logical Entropy.David Ellerman - manuscript
    The notion of a partition on a set is mathematically dual to the notion of a subset of a set, so there is a logic of partitions dual to Boole's logic of subsets (Boolean logic is usually mis-specified as "propositional" logic). The notion of an element of a subset has as its dual the notion of a distinction of a partition (a pair of elements in different blocks). Boole developed finite logical probability as the normalized counting (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Mathematical Justification without Proof.Silvia De Toffoli - forthcoming - In Giovanni Merlo, Giacomo Melis & Crispin Wright (eds.), Self-knowledge and Knowledge A Priori. Oxford University Press.
    According to a widely held view in the philosophy of mathematics, direct inferential justification for mathematical propositions (that are not axioms) requires proof. I challenge this view while accepting that mathematical justification requires arguments that are put forward as proofs. I argue that certain fallacious putative proofs considered by the relevant subjects to be correct can confer mathematical justification. But mathematical justification doesn’t come for cheap: not just any argument will do. I suggest that to successfully (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Editorial. Special Issue on Integral Biomathics: Can Biology Create a Profoundly New Mathematics and Computation?Plamen L. Simeonov, Koichiro Matsuno & Robert S. Root-Bernstein - 2013 - J. Progress in Biophysics and Molecular Biology 113 (1):1-4.
    The idea behind this special theme journal issue was to continue the work we have started with the INBIOSA initiative (www.inbiosa.eu) and our small inter-disciplinary scientific community. The result of this EU funded project was a white paper (Simeonov et al., 2012a) defining a new direction for future research in theoretical biology we called Integral Biomathics and a volume (Simeonov et al., 2012b) with contributions from two workshops and our first international conference in this field in 2011. The initial (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. On The Sense and Reference of A Logical Constant.Harold Hodes - 2004 - Philosophical Quarterly 54 (214):134-165.
    Logicism is, roughly speaking, the doctrine that mathematics is fancy logic. So getting clear about the nature of logic is a necessary step in an assessment of logicism. Logic is the study of logical concepts, how they are expressed in languages, their semantic values, and the relationships between these things and the rest of our concepts, linguistic expressions, and their semantic values. A logical concept is what can be expressed by a logical constant in a language. So (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  44. Arbitrary Reference in Logic and Mathematics.Massimiliano Carrara & Enrico Martino - 2024 - Springer Cham (Synthese Library 490).
    This book develops a new approach to plural arbitrary reference and examines mereology, including considering four theses on the alleged innocence of mereology. The authors have advanced the notion of plural arbitrary reference in terms of idealized plural acts of choice, performed by a suitable team of agents. In the first part of the book, readers will discover a revision of Boolosʼ interpretation of second order logic in terms of plural quantification and a sketched structuralist reconstruction of second-order arithmetic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. On Russell's Logical Atomism.Landon D. C. Elkind - 2018 - In Landon D. C. Elkind & Gregory Landini (eds.), The Philosophy of Logical Atomism: A Centenary Reappraisal. New York, NY, USA: Palgrave Macmillan. pp. 3-37.
    I characterize and argue against the standard interpretation of logical atomism. The argument against this reading is historical: the standard interpretation of logical atomism (1) fails to explain how the view is inspired by nineteenth-century developments in mathematics, (2) fails to explain how logic is central to logical atomism, and (3) fails to explain how logical atomism is a revolutionary and new "scientific philosophy." In short, the standard interpretation is a bad history of logical atomism. A novel interpretation of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Mathematical thought in the light of Matte Blanco’s work.Giuseppe Iurato - 2013 - Philosophy of Mathematics Education Journal 27:1-9.
    Taking into account some basic epistemological considerations on psychoanalysis by Ignacio Matte Blanco, it is possible to deduce some first simple remarks on certain logical aspects of schizophrenic reasoning. Further remarks on mathematical thought are also made in the light of what established, taking into account the comparison with the schizophrenia pattern.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  47. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  49. Mathematizing as a virtuous practice: different narratives and their consequences for mathematics education and society.Deborah Kant & Deniz Sarikaya - 2020 - Synthese 199 (1-2):3405-3429.
    There are different narratives on mathematics as part of our world, some of which are more appropriate than others. Such narratives might be of the form ‘Mathematics is useful’, ‘Mathematics is beautiful’, or ‘Mathematicians aim at theorem-credit’. These narratives play a crucial role in mathematics education and in society as they are influencing people’s willingness to engage with the subject or the way they interpret mathematical results in relation to real-world questions; the latter yielding important normative considerations. Our strategy (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  50. Does Logic Have a History at All?Jens Lemanski - forthcoming - Foundations of Science:1-23.
    To believe that logic has no history might at first seem peculiar today. But since the early 20th century, this position has been repeatedly conflated with logical monism of Kantian provenance. This logical monism asserts that only one logic is authoritative, thereby rendering all other research in the field marginal and negating the possibility of acknowledging a history of logic. In this paper, I will show how this and many related issues have developed, and that they are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 942